LIGHT

  • News
  • Docs
  • Community
  • Reddit
  • GitHub
  • About Light
    • Overview
    • Testimonials
    • What is Light
    • Features
    • Principles
    • Benefits
    • Roadmap
    • Community
    • Articles
    • Videos
    • License
    • Why Light Platform
  • Getting Started
    • Get Started Overview
    • Environment
    • Light Codegen Tool
    • Light Rest 4j
    • Light Tram 4j
    • Light Graphql 4j
    • Light Hybrid 4j
    • Light Eventuate 4j
    • Light Oauth2
    • Light Portal Service
    • Light Proxy Server
    • Light Router Server
    • Light Config Server
    • Light Saga 4j
    • Light Session 4j
    • Webserver
    • Websocket
    • Spring Boot Servlet
  • Architecture
    • Architecture Overview
    • API Category
    • API Gateway
    • Architecture Patterns
    • CQRS
    • Eco System
    • Event Sourcing
    • Fail Fast vs Fail Slow
    • Integration Patterns
    • JavaEE declining
    • Key Distribution
    • Microservices Architecture
    • Microservices Monitoring
    • Microservices Security
    • Microservices Traceability
    • Modular Monolith
    • Platform Ecosystem
    • Plugin Architecture
    • Scalability and Performance
    • Serverless
    • Service Collaboration
    • Service Mesh
    • SOA
    • Spring is bloated
    • Stages of API Adoption
    • Transaction Management
    • Microservices Cross-cutting Concerns Options
    • Service Mesh Plus
    • Service Discovery
  • Design
    • Design Overview
    • Design First vs Code First
    • Desgin Pattern
    • Service Evolution
    • Consumer Contract and Consumer Driven Contract
    • Handling Partial Failure
    • Idempotency
    • Server Life Cycle
    • Environment Segregation
    • Database
    • Decomposition Patterns
    • Http2
    • Test Driven
    • Multi-Tenancy
    • Why check token expiration
    • WebServices to Microservices
  • Cross-Cutting Concerns
    • Concerns Overview
  • API Styles
    • Light-4j for absolute performance
    • Style Overview
    • Distributed session on IMDG
    • Hybrid Serverless Modularized Monolithic
    • Kafka - Event Sourcing and CQRS
    • REST - Representational state transfer
    • Web Server with Light
    • Websocket with Light
    • Spring Boot Integration
    • Single Page Application
    • GraphQL - A query language for your API
    • Light IBM MQ
    • Light AWS Lambda
    • Chaos Monkey
  • Infrastructure Services
    • Service Overview
    • Light Proxy
    • Light Mesh
    • Light Router
    • Light Portal
    • Messaging Infrastructure
    • Centralized Logging
    • COVID-19
    • Light OAuth2
    • Metrics and Alerts
    • Config Server
    • Tokenization
    • Light Controller
  • Tool Chain
    • Tool Chain Overview
  • Utility Library
  • Service Consumer
    • Service Consumer
  • Development
    • Development Overview
  • Deployment
    • Deployment Overview
    • Frontend Backend
    • Linux Service
    • Windows Service
    • Install Eventuate on Windows
    • Secure API
    • Client vs light-router
    • Memory Limit
    • Deploy to Kubernetes
  • Benchmark
    • Benchmark Overview
  • Tutorial
    • Tutorial Overview
  • Troubleshooting
    • Troubleshoot
  • FAQ
    • FAQ Overview
  • Milestones
  • Contribute
    • Contribute to Light
    • Development
    • Documentation
    • Example
    • Tutorial

Light Mesh

Several sidecars in the light-mesh project can be used as a sidecar container in a Kubernetes pod along with your API built with any frameworks or languages to address cross-cutting concerns. With most of the cross-cutting concerns addressed, your developers can focus on the business logic only in the backend API.

What Is a Sidecar Pattern

Segregating the functionalities of an application into a separate process can be viewed as a Sidecar pattern. The sidecar design pattern allows you to add a number of capabilities to your application without additional configuration code for third-party components.

In software architecture a sidecar attach to a parent application and extends/enhances its functionalities. A sidecar is loosely coupled with the main application.

In Kubernetes cluster environment, sidecar can be deployed as Sidecar container run in parallel with the main container in the pod.

Benefits of Using a Sidecar Pattern:

  • Reduces the complexity in the microservice code by abstracting the common infrastructure-related functionalities to a different layer.

  • Reduces code duplication in a microservice architecture since you do not need to write configuration code inside each microservice.

  • Provide loose coupling between application code and the underlying platform.

  • Http-sidecar

The Http-sidecar integrate light-proxy and light-router features to handler ingress and egress traffic in a Kubernetes pod; and it can be used as a sidecar to address cross-cutting concerns for APIs built with any framework and language.

  • Kafka-Sidecar

Kafka sidecar contains both producer and consumers (consumer group, stream processor and ksqldb subscriber) to interact with a Kafka cluster without the developer knowing Kafka client. All the interactions to Kafka are through the sidecar with REST APIs. Like using the light-proxy as a sidecar, we can leverage light-4j middleware handlers to address cross-cutting concerns at the sidecar level and propagate tracer to the ProducerRecord headers.

  • News
  • Docs
  • Community
  • Reddit
  • GitHub
  • About Light
  • Getting Started
  • Architecture
  • Design
  • Cross-Cutting Concerns
  • API Styles
  • Infrastructure Services
  • Tool Chain
  • Utility Library
  • Service Consumer
  • Development
  • Deployment
  • Benchmark
  • Tutorial
  • Troubleshooting
  • FAQ
  • Milestones
  • Contribute