LIGHT

  • News
  • Docs
  • Community
  • Reddit
  • GitHub

Why check token expiration

In web service architecture, normally people handle JWT token expiration re-actively. Here is the flow.

  • Client sends a request with a JWT token in the header
  • The service receives the request and verifies if the JWT token expired
  • If expired, then returns 401 - token expired
  • When the client receives this error and body, it will go to the OAuth 2.0 provider to renew a new token
  • Resends the request with the new token

Note that if token is not expired then go to the next step.

The above flow doesn’t work with microservices architecture as it will cause data consistency issues if the token being used is about to expire.

For example, the client is calling two services in sequence. The first service verifies the token, making sure it is not expired and that the transaction went through. However, when the second service receives the token, it is already expired and returns an error message to the client. In this scenario, the client can still renew the token and resend the second request with the new token.

Let’s take a look at the next scenario. The client is calling the first service and the first service calls the second service. What if the first service passed but the second service got a token expired error? If we still follow the above flow, then we need the client to renew the token and retry first service again then first service calls to second service. This requires the first service must be idempotent which is much more complicated to handle.

To avoid these complicated scenarios, in light-4j framework, we check the token expiration pro-actively in the client module and renew a new token before it is about to expire. The default configuration is 1 minute before token expiration. A separate thread will contact light-oauth2 token service to renew the token.

  • About Light
    • Overview
    • Testimonials
    • What is Light
    • Features
    • Principles
    • Benefits
    • Roadmap
    • Community
    • Articles
    • Videos
    • License
    • Why Light Platform
  • Getting Started
    • Get Started Overview
    • Environment
    • Light Codegen Tool
    • Light Rest 4j
    • Light Tram 4j
    • Light Graphql 4j
    • Light Hybrid 4j
    • Light Eventuate 4j
    • Light Oauth2
    • Light Portal Service
    • Light Proxy Server
    • Light Router Server
    • Light Config Server
    • Light Saga 4j
    • Light Session 4j
    • Webserver
    • Websocket
    • Spring Boot Servlet
  • Architecture
    • Architecture Overview
    • API Category
    • API Gateway
    • Architecture Patterns
    • CQRS
    • Eco System
    • Event Sourcing
    • Fail Fast vs Fail Slow
    • Integration Patterns
    • JavaEE declining
    • Key Distribution
    • Microservices Architecture
    • Microservices Monitoring
    • Microservices Security
    • Microservices Traceability
    • Modular Monolith
    • Platform Ecosystem
    • Plugin Architecture
    • Scalability and Performance
    • Serverless
    • Service Collaboration
    • Service Mesh
    • SOA
    • Spring is bloated
    • Stages of API Adoption
    • Transaction Management
    • Microservices Cross-cutting Concerns Options
    • Service Mesh Plus
    • Service Discovery
  • Design
    • Design Overview
    • Design First vs Code First
    • Desgin Pattern
    • Service Evolution
    • Consumer Contract and Consumer Driven Contract
    • Handling Partial Failure
    • Idempotency
    • Server Life Cycle
    • Environment Segregation
    • Database
    • Decomposition Patterns
    • Http2
    • Test Driven
    • Multi-Tenancy
    • Why check token expiration
    • WebServices to Microservices
  • Cross-Cutting Concerns
    • Concerns Overview
  • API Styles
    • Light-4j for absolute performance
    • Style Overview
    • Distributed session on IMDG
    • Hybrid Serverless Modularized Monolithic
    • Kafka - Event Sourcing and CQRS
    • REST - Representational state transfer
    • Web Server with Light
    • Websocket with Light
    • Spring Boot Integration
    • Single Page Application
    • GraphQL - A query language for your API
    • Light IBM MQ
    • Light AWS Lambda
    • Chaos Monkey
  • Infrastructure Services
    • Service Overview
    • Light Proxy
    • Light Mesh
    • Light Router
    • Light Portal
    • Messaging Infrastructure
    • Centralized Logging
    • COVID-19
    • Light OAuth2
    • Metrics and Alerts
    • Config Server
    • Tokenization
    • Light Controller
  • Tool Chain
    • Tool Chain Overview
  • Utility Library
  • Service Consumer
    • Service Consumer
  • Development
    • Development Overview
  • Deployment
    • Deployment Overview
    • Frontend Backend
    • Linux Service
    • Windows Service
    • Install Eventuate on Windows
    • Secure API
    • Client vs light-router
    • Memory Limit
    • Deploy to Kubernetes
  • Benchmark
    • Benchmark Overview
  • Tutorial
    • Tutorial Overview
  • Troubleshooting
    • Troubleshoot
  • FAQ
    • FAQ Overview
  • Milestones
  • Contribute
    • Contribute to Light
    • Development
    • Documentation
    • Example
    • Tutorial
“Why check token expiration” was last updated: April 5, 2021: Issue246 (#256) (50b1c10)
Improve this page
  • News
  • Docs
  • Community
  • Reddit
  • GitHub
  • About Light
  • Getting Started
  • Architecture
  • Design
  • Cross-Cutting Concerns
  • API Styles
  • Infrastructure Services
  • Tool Chain
  • Utility Library
  • Service Consumer
  • Development
  • Deployment
  • Benchmark
  • Tutorial
  • Troubleshooting
  • FAQ
  • Milestones
  • Contribute