LIGHT

  • News
  • Docs
  • Community
  • Reddit
  • GitHub

Client vs light-router

High throughput and low latency are principles of Light. When it comes to service to service communication, we recommend using client side service discovery and load balancing.

light-4j has a client module named Http Client that can be embedded into any Java application to handle the communication to services built in Light. It handles HTTP 2.0 connection and OAuth 2.0 provider communication as well as traceability in the service to service call tree.

However, the client module is not suitable for all scenarios as it requires that the consumer application be built in Java 8 and above. This is not an issue for service to service communication if both are built in Light. But what about other consumers like applications built with lower Java versions or with other languages?

For other languages, we are trying to provide client modules based on priority. However, if you want to consume services now, you can leverage light-router which is a client module at the network level.

You have two options to deploy light-router:

  • Deploy on the client host

In this setup, the light-router instance is private for the client and it can handle the token renewal just like you have an embedded client module. Also, if there is no network hop, the performance would be better than the next option. In this scenario, the consumer owns the router instance.

  • Deploy in another network host

In this setup, the service provider owns the router instance. There is an extra network hop between client and router so latency will be increased. Also, as the router instance is not owned by the consumer, you cannot deploy client_id and client_secret on the router to handle the JWT token renewal from OAuth 2.0 provider.

  • About Light
    • Overview
    • Testimonials
    • What is Light
    • Features
    • Principles
    • Benefits
    • Roadmap
    • Community
    • Articles
    • Videos
    • License
    • Why Light Platform
  • Getting Started
    • Get Started Overview
    • Environment
    • Light Codegen Tool
    • Light Rest 4j
    • Light Tram 4j
    • Light Graphql 4j
    • Light Hybrid 4j
    • Light Eventuate 4j
    • Light Oauth2
    • Light Portal Service
    • Light Proxy Server
    • Light Router Server
    • Light Config Server
    • Light Saga 4j
    • Light Session 4j
    • Webserver
    • Websocket
    • Spring Boot Servlet
  • Architecture
    • Architecture Overview
    • API Category
    • API Gateway
    • Architecture Patterns
    • CQRS
    • Eco System
    • Event Sourcing
    • Fail Fast vs Fail Slow
    • Integration Patterns
    • JavaEE declining
    • Key Distribution
    • Microservices Architecture
    • Microservices Monitoring
    • Microservices Security
    • Microservices Traceability
    • Modular Monolith
    • Platform Ecosystem
    • Plugin Architecture
    • Scalability and Performance
    • Serverless
    • Service Collaboration
    • Service Mesh
    • SOA
    • Spring is bloated
    • Stages of API Adoption
    • Transaction Management
    • Microservices Cross-cutting Concerns Options
    • Service Mesh Plus
    • Service Discovery
  • Design
    • Design Overview
    • Design First vs Code First
    • Desgin Pattern
    • Service Evolution
    • Consumer Contract and Consumer Driven Contract
    • Handling Partial Failure
    • Idempotency
    • Server Life Cycle
    • Environment Segregation
    • Database
    • Decomposition Patterns
    • Http2
    • Test Driven
    • Multi-Tenancy
    • Why check token expiration
    • WebServices to Microservices
  • Cross-Cutting Concerns
    • Concerns Overview
  • API Styles
    • Light-4j for absolute performance
    • Style Overview
    • Distributed session on IMDG
    • Hybrid Serverless Modularized Monolithic
    • Kafka - Event Sourcing and CQRS
    • REST - Representational state transfer
    • Web Server with Light
    • Websocket with Light
    • Spring Boot Integration
    • Single Page Application
    • GraphQL - A query language for your API
    • Light IBM MQ
    • Light AWS Lambda
    • Chaos Monkey
  • Infrastructure Services
    • Service Overview
    • Light Proxy
    • Light Mesh
    • Light Router
    • Light Portal
    • Messaging Infrastructure
    • Centralized Logging
    • COVID-19
    • Light OAuth2
    • Metrics and Alerts
    • Config Server
    • Tokenization
    • Light Controller
  • Tool Chain
    • Tool Chain Overview
  • Utility Library
  • Service Consumer
    • Service Consumer
  • Development
    • Development Overview
  • Deployment
    • Deployment Overview
    • Frontend Backend
    • Linux Service
    • Windows Service
    • Install Eventuate on Windows
    • Secure API
    • Client vs light-router
    • Memory Limit
    • Deploy to Kubernetes
  • Benchmark
    • Benchmark Overview
  • Tutorial
    • Tutorial Overview
  • Troubleshooting
    • Troubleshoot
  • FAQ
    • FAQ Overview
  • Milestones
  • Contribute
    • Contribute to Light
    • Development
    • Documentation
    • Example
    • Tutorial
“Client vs light-router” was last updated: April 5, 2021: Issue246 (#256) (50b1c10)
Improve this page
  • News
  • Docs
  • Community
  • Reddit
  • GitHub
  • About Light
  • Getting Started
  • Architecture
  • Design
  • Cross-Cutting Concerns
  • API Styles
  • Infrastructure Services
  • Tool Chain
  • Utility Library
  • Service Consumer
  • Development
  • Deployment
  • Benchmark
  • Tutorial
  • Troubleshooting
  • FAQ
  • Milestones
  • Contribute